煤系针状焦原料在成焦过程中的 XRD 结构分析

范青杰,宋 岩,赖仕全*,岳 莉,朱亚明,赵雪飞

辽宁科技大学化工学院,辽宁 鞍山 114051

摘 要 低 QI(原生喹啉不溶物)含量的软沥青(SCTP)是制备煤系针状焦的优选原料,研究其在成焦过程 中的结构变化有助于高品质针状焦的研制。基于样品的 X 射线衍射(XRD)数据,利用 Smarsly 团队开发的 CarbX 软件对其全谱拟合,定量出 SCTP 在不同炭化温度(400,500,600,800,1000,1200 和1400 ℃)下 的微晶结构参数,进而在纳米尺度下研究 SCTP 的热致结构变化情况。结果表明,随炭化温度升高,微晶堆 垛的石墨烯层大小 L。从初始沥青的 10.3 Å 逐步增大到 1 400 ℃的 47.9 Å, 但在 500 ℃前 L。增加缓慢, 只 有当温度超过 800 ℃后,L。才显著增大,这表明需要 800 ℃以上的高温才能使交联石墨烯层内的原子重组, 进而导致微晶长大。然而,石墨烯碳网的 C-C 键长 l。受温度的影响很小,在 1.41~1.42 Å 范围内变化。由 于 SCTP 在液相炭化成半焦过程中存在中间相转化,导致微晶堆垛高度 L。在 500 ℃前逐步增大,在 500 ℃ 时达到最大(L_i = 31.1 Å),随后由于半焦进一步热解缩聚,使 L_i 逐步减小,在 1 000 ℃时达到最低点(L_i = 15.4 Å), 超过1000 ℃后又开始增大。与L。的变化趋势相同, 堆垛的石墨烯层数 N 从原始沥青的2.66 层 增加到 500 ℃的约 9.05 层,随后减小到 1 000 ℃的 4.55 层,超过 1 000 ℃后又开始增大。由于 500 ℃前样 品仍处于沥青态,所以此阶段微晶的石墨烯层间距 a。都较大,约为 3.50 Å。当在 500 ℃变为半焦后, a。迅 速减小至 3.44 Å。随后温度升高, a₃ 在 1 000 ℃达到最小(a₃ = 3.39 Å), 1 000 ℃后又开始增大, 这表明焦 炭经历了收缩再膨胀过程。通过 CarbX 软件拟合样品的 XRD 数据,除了可得到样品炭微晶的主要尺寸(L_a, L_{e} , N, a_{3})信息外,还可获得这些参数的分散性(k_{a} , k_{e} , σ_{3} , ε_{3})以及堆垛的取向性(q)、均匀性(η)和无序碳 含量(c_m)等信息,有利于深入了解样品的微观结构,有助于优质针状焦的生产。

关键词 煤系针状焦;煤沥青;微晶结构;X射线衍射 中图分类号:TQ522.65 文献标识码:A DOI:10.3964/j.issn.1000-0593(2022)06-1979-06

引 言

煤系针状焦是以煤焦油沥青为原料,通过原料预处理、 延迟焦化、高温煅烧等工序获得的一类特殊焦炭,外观为银 灰色,具有明显的流线型纹理^[1]。由于独特的针状显微结 构,使其具有高导电率、低热膨胀系数、好的耐烧蚀性、强 抗氧化性等一系列优良性能,是生产锂电负极材料^[2]、超级 电容器电极^[3]和高功率、超高功率石墨电极^[4]的理想原料。

煤系针状焦的宏观性能与其微观结构密切相关。因此, 精确了解其碳微观结构对于调整特定用途的性能,并相应地 优化生产工艺至关重要。研究者已采用众多分析测试手段进 行了广泛的表征研究^[5-8]。其中,X射线衍射(XRD)技术是 最常用的重要手段之一,可从纳米尺度研究针状焦的微观结 构特征^[9]。由于煤沥青及其衍生焦炭都属于非石墨化碳(或 过渡态碳、乱层碳),由小而随机排列的石墨烯堆垛(亦称为 基本结构单元)组成,不具有任何三维长程有序性,因此通 过 XRD 方法对它们的结构表征具有挑战性^[10]。显然适用于 晶体材料的经典 Bragg-Scherrer 方法不合适,因此有研究者 采用分峰拟合方法将结晶碳的衍射峰从体系中分离出来,再 通过 Bragg-Scherrer 方法计算样品的微晶结构参数^[11]。最 近,有报道基于对碳质材料微观结构的长期研究^[12],开发出 了一款适用于非石墨化碳(NGCs)微晶结构分析的软件,即 CarbX 软件^[13],通过软件全谱拟合 XRD 数据,直接获得样 品的微晶结构参数,其原理有点类似于 Rietveld 方法。目前, 用 CarbX 软件来研究煤系针状焦原料在成焦过程中微晶结 构变化还未见文献报道。在以往研究^[14]基础上,采用样品的 XRD 数据,利用 CarbX 软件对其全谱拟合,定量出煤系针状

收稿日期: 2021-05-04,修订日期: 2021-06-13

基金项目:国家自然科学基金项目(U1361126),辽宁省自然科学基金项目(20180551218),辽宁科技大学优秀人才项目(2018RC07)资助 作者简介:范青杰,1996年生,辽宁科技大学化工学院硕士研究生 e-mail:1797395056@qq.com

^{*} 通讯作者 e-mail: yuelilsq@163.com

焦原料 SCTP 在不同炭化温度(400,500,600,800,1000, 1200和1400℃)下的微晶结构参数,再将这些参数与炭化 温度关联,进而研究了 SCTP 在成焦过程中微观结构的变化 情况,以期洞察其液相炭化成焦机理,为高品质煤系针状焦 的生产提供理论依据。

1 实验部分

1.1 原料

实验所用原料软沥青(SCTP)由中钢集团鞍山热能研究 院有限公司提供(辽宁,中国);甲苯(AR)由北京化工厂提供 (北京,中国);喹啉(AR)由天津瑞金特化工有限公司提供 (天津,中国)。原料 SCTP 的基本性质见表 1。

表 1 原料 SCTP 的基本性质 Table 1 Basic properties of raw material SCTP

		-	<u>^</u>			
Sample	SPª ∕℃	TS ^b / %	TI-QS ^c / %	QI ^d /%	CVe / %	$^{ m Ash^f}$ / $^{ m \%}$
SCTP	33	88.17	11.09	0.74	37.3	0.09

注:"软化点;^b甲苯可溶物;^c甲苯不溶-喹啉可溶物;^d喹啉不溶物;^c 结焦点;^f灰分

Note: ^a Softening point; ^b Toluene soluble; ^c Toluene insoluble-Quinoline soluble; ^d Quinoline insoluble; ^e Coking value

1.2 样品的炭化

分别称取约 10 g 软沥青, 放入瓷舟中, 置于管式炉内, 在氮气保护下以 3 ℃ • min⁻¹的升温速率加热至设定温度 (400, 500, 600, 800, 1 000, 1 200 和 1 400 ℃), 并恒温 120 min,反应结束后自然冷却至室温,获得样品。样品被标记为 SCTP-X,X代表炭化温度,其中原料沥青的炭化温度设为 20℃。

1.3 样品的工业性质分析

原料沥青的工业性质分析按国家标准执行:软化点按照 GB/T4507—1999方法测定,甲苯不溶物按照 GB/T2292— 1997方法测定,喹啉不溶物按照 GB/T2293—1997方法测 定,结焦值按照 GB/T2727—88 方法测定,灰分按照 GB/ T2295—1980方法测定。

1.4 X射线衍射分析

样品的 X 射线衍射(XRD)分析在荷兰帕纳科公司生产 的 Axios 型 XRD 分析仪上完成。Cu K α 为入射源(λ = 1.540 6 Å),工作时管电压为 40 kV,管电流为 40 mA,扫描 范围区间为 10°~90°,步长为 0.013°。所有样品在测试前用 玛瑙研钵研磨过 325 目筛,其中原料 SCTP 在研磨前需在 200 ℃真空烘箱中处理 60 min,以提高其软化点。

XRD 图谱的拟合采用文献[13]报道的 CarbX 软件和方 法来完成。具体过程为:把样品的 XRD 数据导入软件,衍射 角 2 θ 被转换为衍射矢量 S(S=2sin θ/λ),选择拟合模板,设 置选项和参数,先手动初调拟合,然后利用 Wolfram Mathematica 10.3 软件进行自动拟合,最后再进行手动精调,当 拟合偏差约小于 2%时输出拟合数据。通过 CarbX 软件全谱 拟合,可获得与样品炭微晶结构相关的参数达 20 个,其中堆 垛石墨烯层向结构参数有 6 个(L_a , $\langle l \rangle$, k_a , k_r , l_{cc} , σ_1),堆 垛石墨烯层间结构参数有 11 个(L_c , k_c , a_3 , σ_3 , a_{3min} , Δa_3 , N, ε_3 , η , q, u_3),无序结构参数有 3 个(c_{un} , c_N , c_0)。表 2 为这些参数的物理意义和图示说明。

表 2 利用 CarbX 软件获得的微晶结构参数及意义 Table 2 Parameter symbols and meanings obtained by CarbX software

	Parameter	Meaning	Illustration		
Intralayer structure	$L_{\rm a}/{ m \AA}$	Average graphene layer size			
	$\langle l \rangle / { m \AA}$	Average chord length			
	k_{a}	Polydispersity of chord lengthl			
	k _r	Polydispersity of the radius of the layers	• \$\$-\$800		
	$l_{ m cc}/{ m \AA}$	Average C—C bond length	the second second		
	σ_1	Standard deviation of the first-neighbor distribution			

续表 2						
Interlayer structure	$L_{ m c}/{ m \AA}$	Average stack size				
	$k_{ m c}$	Polydispersity of $L_{\rm c}$				
	a_3 / Å	Average interlayer spacing				
	σ_3	Standard deviation of interlayer spacing				
	$a_{3\min}/{ m \AA}$	Minimum of interlayer spacing				
	Δa_3	Difference between a_3 and $a_{3 \min}$	N=5			
	N	Average number of graphene layers per stack				
	ε3	Disorder of graphene layers				
	u_3	Parameterof thermal motion				
	η	Homogeneity of the stacks	$\eta=1$			
	q	Parameterof preferred orientation	$q=1 \qquad q<1$			
Impurities	$c_{\rm un}$	Concentration of unorganized carbon	CH ₃ H ₂ Ch ₃ Ch			
	$c_{\rm N}$	Concentration of unorganized nitrogen				
	CO	Concentration of unorganized oxygen	HO' LIII III			

2 结果与讨论

2.1 XRD 图谱

图 1 为原料沥青 SCTP 及其热处理到 1 400 ℃的 XRD 图谱。由图 1 可见,在所有温度下,衍射角在 16°~33°范围 反映微晶堆垛石墨烯层在 Z 轴方向堆积结构的(002)峰都非 明显,而在 43°附近反映微晶堆垛石墨烯层大小的(100)峰在 800 ℃才显露出来,在 44.5°左右的(101)峰在 1 000 ℃时才 被观察到,表明 1000 ℃以上的高温才能导致焦炭的乱层结 构向类石墨结构转变。

Fig. 1 XRD patterns of the SCTP and the samples obtained at heat-treatment temperatures up to 1 400 °C

随炭化温度升高,(002)峰的强度逐步增大,500 ℃后变 化不明显,其峰位置 20 从 20 ℃的 23.8°逐步增大至 500 ℃ 的 25.9°,随后略有减小,800 ℃后基本维持在 25.7°左右。 同时,(002)峰的形状从初始的弥散峰到 500 ℃的尖峰,随后 峰略变宽,分析认为高于 500 ℃体系逐步固化,中间相融并 变形导致炭微晶堆积更混乱。500 ℃时最窄的(002)峰表明, 此温度下所得样品的微晶具有最大的石墨烯层数,这可能是 由于沥青类物质在 400~500 ℃温度范围内存在中间相转化 的缘故,此时体系极低的黏度有利于沥青芳烃大分子的堆积 排列。

2.2 CarbX 软件拟合

图 2 为用 CarbX 软件对 SCTP 及其热处理到 1 400 ℃样 品的 XRD 数据全谱拟合的情况。由图 2(a),(b)和(c)可见, 在所有温度下,当衍射矢量 S>0.23(2 θ >20°)时,CarbX 拟 合曲线与相应的 XRD 数据吻合良好,仅在 S<0.23(2 θ < 20°)范围内存在较明显的轻微偏差,但这种偏差并不影响对 样品的整体分析。图 2(a)和(c)中为了相应的拟合偏差 [$(I_{
 测量} - I_{
 和_{G}})/I_{
 测量}$]。所有样品的拟合偏差都在±2%范围 内,证实了 CarbX 软件适用于分析沥青及其焦炭等非石墨化 富碳材料的 XRD 数据。

为了比较不同方法所得结果的差异,实验中以样品 SCTP-1 400 ℃为例,除了 CarbX 方法[见图 2(c)]外,还采 用经典的 Bragg-Scherrer 方法和相关研究的分峰拟合方法对 其 XRD 数据进行了分析。图 2(d)为样品 SCTP-1 400 ℃的 XRD 图谱的分峰拟合结果,通过拟合将(002)峰细分为两个 峰:π峰和γ峰,π峰为结晶碳的衍射峰,γ峰为无定形碳的

图 2 SCTP 及其热处理到 1 400 ℃样品的 XRD 图谱的 CarbX 拟合结果(a,b,c)和 SCTP-1 400 ℃的分峰拟合结果(d) Fig. 2 The fitting results of XRD patterns for the SCTP and the samples processed at heat-treatment temperatures up to 1 400 ℃ (a, b, c) and the peak-fitting results of SCTP-1 400 ℃ (d)

表 3	三种	万法所得 SCTP-1 400 C 的微晶结构参数
Tal	ble 3	Microcrystalline structural parameters
		obtained by three methods

Parameter	Bragg-Scherrer method	Peak-fitting method	CarbX method
$L_{ m a}/{ m \AA}$	39.1	45.9	41.5
$L_{ m c}/{ m \AA}$	16.2	22.2	16.6
$d_{ m 002}/{ m \AA}$	3.45	3.47	3.41
N	5.69	7.4	4.88

衍射峰。表3列出了这三种方法所得样品微晶的主要尺寸数据,包括微晶石墨烯层的平均大小 La、堆垛的平均高度 Le、 层间距 doo2 和层数 N 等参数。由表3可见,三种方法所得这 些数据的大小相差不大,CarbX 方法得到的参数数值介于 Bragg-Scherrer 方法和分峰拟合方法所得参数数值之间,表 明 CarbX 方法用于 XRD 数据分析的可靠性。

2.3 SCTP 在成焦过程中的微晶结构分析

根据 CarbX 软件的全谱拟合结果,表4给出了在不同炭 化温度下各样品的微晶结构参数,包括堆垛石墨烯层内结构 参数、堆垛石墨烯层间结构参数和堆垛无序结构参数,将这 些参数与炭化温度关联,进一步了解 SCTP 在成焦过程中的 结构变化情况。

2.3.1 微晶堆垛石墨烯层内的结构变化情况

由表4可见,石墨烯层的平均大小L。在800 ℃之前增

加缓慢,从初始的 10.3 Å 到 800 ℃的 15.7 Å,但高于 800 ℃增加较迅猛,而且温度越高增加越迅速,在 1 400 ℃, L_a 达 47.9 Å。表明至少需要 800 ℃以上的温度,才能使堆垛交 联层内的原子重组,从而使微晶的芳香平面增大。石墨烯层 弦长 〈*l*〉的多分散性 k_a 则随温度升高逐步减小,从 20 ℃的 0.5 减小到 1 400 ℃的 0.25。 k_a 越小,则弦长 〈*l*〉越均匀,表 明石墨烯层越规整。另外在各温度下,石墨烯层碳网平面的 平均 C一C 键长 l_{ee} 都在 1.41~1.42 Å 范围内,表明 l_{ee} 受温 度的影响很小。第一个相邻分布的标准偏差 σ_1 ,其可估计 2D 石墨烯晶格中的缺陷程度。随着温度的升高, σ_1 呈下降趋 势,从原料沥青的 0.24 下降到 1 400 ℃的 0.15,分析认为由 于温度升高,导致石墨烯碳网因受热应变而松弛,使交联层 内的原子可重组,进而导致缺陷愈合。

2.3.2 微晶堆垛石墨烯层间的结构变化情况

由表 4 可见,与 L_s 的持续增大不同,堆垛的平均高度 L_c 随温度的变化则复杂一些。 L_c 随温度升高先显著增大, 500 ℃时达到最大值(L_c =31.1Å),随后明显减小,在1000 ℃后又开始增大。对应的堆垛石墨烯层数 N 从原始沥青的 2 ~3 层增加到 500 ℃的 9 层左右,达1000 ℃时下降到约 5 层。只有超过1000 ℃时,N 才会进一步增加。在 500 ℃时 L_c 和 N 的这种暂时增加可归因于液相炭化阶段中间相的生 成,而随后的明显下降则是由于体系固化,中间相的融化并 导致芳烃平面分子的短程有序排列被破坏。堆垛高度的多分

Tuble 1 Microerystannie Structural parameters of the samples obtained by Carbon Hering									
	Parameter	20 °C	400 °C	500 °C	600 °C	800 °C	1 000 ℃	1 200 ℃	1 400 °C
Intralayer structure	$L_{ m a}/{ m \AA}$	10.3	12.6	14.5	13.8	15.7	21.3	30.4	47.9
	$\langle l \rangle / \text{\AA}$	6.9	8.4	9.7	9.2	11.8	17.1	24.3	38.3
	k_{a}	0.5	0.5	0.5	0.5	0.33	0.25	0.25	0.25
	$k_{\rm r}$	0.39	0.39	0.39	0.39	0.23	0.16	0.16	0.16
	$l_{ m cc}/{ m \AA}$	1.414	1.416	1.413	1.414	1.412	1.413	1.414	1.415
	σ_1	0.24	0.25	0.23	0.20	0.21	0.17	0.15	0.15
	$L_{ m c}/{ m \AA}$	9.4	13.7	31.1	18.4	16.9	15.4	16.7	17.3
	$k_{ m c}$	0.22	0.46	0.47	0.99	0.90	0.22	0.33	0.32
	a_3 / Å	3.52	3.50	3.44	3.42	3.41	3.39	3.42	3.41
	σ_3	0.31	0.32	0.29	0.23	0.31	0.32	0.28	0.29
T (I	$a_{3 m min}/ m \AA$	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Interlayer	$\Delta a_3 / \text{\AA}$	0.52	0.50	0.44	0.42	0.41	0.39	0.42	0.41
structure	N	2.66	3.91	9.05	5.39	4.96	4.55	4.87	5.06
	e 3	0.17	0.17	0.15	0.14	0.14	0.13	0.14	0.14
	u_3	0	0	0	0	0	0	0	0
	η	0.73	0.70	0.63	0.81	0.91	0.95	0.95	0.95
	q	0.03	0.04	0.10	0.04	0.17	0.12	0.21	0.23
Impurities	c_{un}	0.15	0.18	0.17	0.12	0.16	0.32	0.34	0.31
	со	0	0	0	0	0	0	0	0
	CN	0	0	0	0	0	0	0	0

表 4 CarbX 拟合获得样品的微晶结构参数 Table 4 Microcrystalline structural parameters of the samples obtained by CarbX fitting

散性 k_c ,提供了堆垛高度的均匀性信息。由表 4 可见,在 500 ℃之前, k_c 逐步增大,这种不均匀性的增加是由于在液相炭 化阶段(<500 ℃),随温度升高,体系逐渐从各向同性向各 向异性转变的缘故,在 400~500 ℃两相共存。在 600 ℃达到 最大值(k_c =0.99),则归因于体系固化时由于中间相(小球) 融并引入了大量的旋错。800 ℃后, k_c 显著降低,表明在较 高的温度下,堆垛高度分布更均匀。

估计微晶结构的另一个重要参数是堆垛石墨烯层的平均 层间距 a_3 。当温度低于 500 °C时,由于所有样品都还是沥 青,其 a_3 基本相同,约为 3.50 Å。到 500 °C时,样品已为半 焦, a_3 明显下降,从 3.50 Å 降到 3.44 Å,与完全无定形碳 的层间距相当。随后, a_3 缓慢下降,约 1 000 °C达到最小(a_3 = 3.39 Å),此时焦炭成熟。超过 1 000 °C, a_3 再略变大,表 明焦炭略有膨胀现象。层间距的标准偏差 σ_3 ,提供了石墨烯 层间距的分布信息。由表 4 可见,除了 600 °C时的 σ_3 较小外 (σ_3 =0.23),其他温度时 σ_3 相差不大,约为 0.3 左右。然而, 由于这些值都偏小,表明各温度下石墨烯层间距分布都较 均匀。

参数 η用于描述微晶堆垛的均匀性, η越接近 1 则表明 微晶石墨烯堆垛越均匀。由表 4 可见,随温度升高, η先略有 下降,500 ℃时达到最小值(η=0.63),这归因于沥青转化为 半焦过程中体系逐渐出现了中间相的缘故。随后, η显著增 大,在1000 ℃时达 0.95。这种增大是由于在转化为焦炭过 程中脂肪族和芳香族中 C—H 基团的消除所导致,同时也表 明温度越高,堆垛越均匀。

参数 q 用于描述堆垛的择优取向, q 越接近 1 石墨烯堆 垛取向性越好。由表 4 可见,随温度升高, q 有起伏, 但总体 呈增大趋势。然而,由于所有温度下 q 都较小,表明样品的 炭微晶取向性不好,明显处于无序堆积状态。

2.3.2 堆垛无序结构的变化情况

非石墨化碳的相干衍射除了来自石墨烯层间、层内的衍 射外,还来自于其包含的无序碳、氮、氧等杂质的衍射。因 此,CarbX软件还提供了三个参数(*c*_{un}, *c*_N, *c*_O)来描述堆垛 的无序结构。*c*_{un}, *c*_N, *c*_O分别表示微晶中无序碳、氮、氧的 含量。由表4可见,*c*_{un}很小,在0.1%~0.35%范围,且温度 升高,其有增大的趋势。

3 结 论

基于 CarbX 软件对样品 XRD 数据的全谱拟合, 较详细 地研究了煤系针状焦原料 SCTP 在成焦过程中的微晶结构变 化情况,可以得出以下结论:随温度升高,在 SCTP 液相炭 化成半焦阶段(<500 ℃),微晶的横向发育较缓,而纵向增 长则非常明显,500 ℃时其堆垛高度达 31.1 Å、含有约 9 层 石墨烯,此时微晶的横纵比仅约为 0.5,这种暂时的增加归 因于此阶段存在中间相转化。而在半焦固相炭化成焦阶段 (>500 ℃),由于该阶段初期半焦的热解缩聚剧烈,进而导 致微晶的石墨烯层数减小明显, 而达 800 ℃后才观察到微晶 的横向发育明显,超过1000℃微晶又开始纵向增长。在 1 400 ℃时微晶的横纵比达 2.77。 与经典的 Bragg-Scherrer 方法和分峰拟合方法相比, CarbX 拟合方法能获得更多的炭 微晶结构信息,包括微晶堆垛石墨烯的层内结构、层间结构 以及无序结构等参数达 20 个,有利于更深入了解样品的微 观结构,进而对炭化工艺条件做出调整,制备出优质针 状焦。

References

- [1] Zhang Z C, Chen K, Liu D, et al. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105097.
- $\left[\begin{array}{c} 2 \end{array} \right]$ Lee S E, Ji H K, Lee Y S, et al. Carbon Letters, 2020, (6): 1.
- [3] Cheng J X, Lu Z J, Zhao X F, et al. Journal of Power Sources, 2021, 494: 229770.
- [4] Mochida I, You Q F, Korai Y, et al. Carbon, 2016, 27(3): 375.
- [5] Zhu Y M, Zhao C L, Xu Y L, et al. Energy & Fuels, 2019, 33(4): 3456.
- [6] Im U S, Kim J Y, Lee S H, et al. Materials Letters, 2019, 237(15): 22.
- [7] Zhu Y M, Liu H M, Xu Y L, et al. Energy & Fuels, 2020, 34: 8676.
- [8] LI Lei, LIN Xiong-chao, LIU Zhe, et al(李 磊,林雄超,刘 哲,等). Journal of Fuel Chemistry and Technology(燃料化学学报), 2021, 49(3): 1071.
- [9] CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, et al(程俊霞,朱亚明,高丽娟,等). Journal of Fuel Chemistry and Technology(燃料化 学学报), 2020, 48(9): 1071.
- [10] Loeh M O, Badaczewski F, Faber K, et al. Carbon, 2016, 109: 823.
- [11] Gubernat M, Fraczek-Szczypta A, Tomala J, et al. Journal of Analytical and Applied Pyrolysis, 2018, 130: 90.
- [12] Pfaff T, Badaczewski F M, Loeh M O, et al. Journal of Physical Chemistry C, 2019, 123(33): 20532.
- [13] Pfaff T, Simmermacher M, Smarsly B M. Journal of Applied Crystallography, 2018, 51(1): 219.
- [14] YUE Li, CHEN Zhao, LAI Shi-quan, et al(岳 莉,陈 召,赖仕全,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(8): 2468.

XRD Structural Analysis of Raw Material Used as Coal-Based Needle Coke in the Coking Process

FAN Qing-jie, SONG Yan, LAI Shi-quan*, YUE Li, ZHU Ya-ming, ZHAO Xue-fei

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

Abstract Soft coal tar pitch (SCTP) with low QI content is the preferred raw material for preparing coal-based needle coke. The study on its structure changes in the cooking process is helpful to prepare high-quality needle coke. In this paper, the CarbX software developed by the Smarsly team was used to fit the full spectrum X-ray diffraction (XRD) data of the samples toquantify the microcrystalline structure parameters of SCTP at different carbonization temperatures (400, 500, 600, 800, 1 000, 1 200 and 1 400 °C), and then investigate the thermally induced structural changes of SCTP at the nanoscale. The results show that the average graphene layer size of microcrystalline stack L_a gradually increases from 10.3 Å for the pristine pitch to 47.9 Å at 1 400 $^{\circ}$ C with the rising of the carbonization temperature, but L_a increases slowly before 500 $^{\circ}$ C. A significant increase of L_a is found only when the temperature exceeds 800 °C, indicating that high temperatures above 800 °C are needed to recombine the atoms in the cross-linked graphene layers and lead to the growth of the microcrystals. However, the C—C bond length (l_{cr}) of the graphene carbon network is slightly affected by temperature and varies in the range of $1.41 \sim 1.42$ Å. Because of mesophase transformation during the liquid-phase carbonization of SCTP into semi-coke, the average stack size L_c gradually increases before 500 ℃ and reaches the maximum at 500 ℃ (L_c=31.1 Å). Subsequently, due to further pyrolysis and polycondensation of semicoke, L_c gradually decreases and reaches the lowest point ($L_c = 15.4$ Å) at 1 000 °C, and increases again after 1 000 °C. Similar to $L_{\rm c}$, the average number of graphene layers per stack N increases from 2. 66 layers for the raw pitch to 9.05 layers at 500 $^{\circ}$ C, then decreases to 4.55 layers at 1 000 °C, and then begins to increase after 1 000 °C. The samples are still in the pitch state before 500 °C the average graphene interlayer spacing a3 is large, about 3.50 Å at this stage. When the pitch becomes semi-coke at ca. 500 °C, a_3 rapidly decreases to 3.44 Å, continues to decrease, reaches the minimum at 1 000 °C ($a_3 = 3.39$ Å), and begins to increase again after 1 000 °C, indicating that the coke has undergone a shrinkage and re-expansion process. By using CarbX software to fit the XRD data of the sample, the main size (L_a, L_c, N, a_3) of carbon microcrystals of the sample can be obtained, as well as the dispersion $(k_a, k_c, \sigma_3, \epsilon_3)$ of these parameters and the orientation (q), homogeneity (η) of per stack and disordered carbon content (c_{un}) . It is helpful to deeply understand the sample's microstructure and to produce high-quality needle coke.

Keywords Coal-based needle coke; Coal-tar pitch; Microcrystalline structure; XRD